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ABSTRACT

The Feynman path-integral formulation of quantum mechanics is developed. The math-
ematical framework is worked out from Schrödinger’s equation, illustrating the compati-
bility of the two formulations. We introduce the sum over all paths, known as the kernel
K, and discuss its implications for events occurring in succession. We compute the kernel
for quadratic Lagrangians. Then, making use of imaginary time, we consider the discrete
version of the kernel, known as the Euclidean path integral, and use it to solve the (quan-
tum) harmonic and anharmonic oscillators through numerical Monte Carlo simulations.
Lastly, we use the framework to quantize the electromagnetic field, as a motivation to
discuss perturbation theory via Feynman diagrams.

Keywords: Feynman’s integral. Quantum mechanics. Numerical simulations. Monte Carlo
methods. Quantum electrodynamics
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1 INTRODUCTION

In the usual formulation of non-relativistic quantum mechanics, the state of a
system is described by a complex wave function Ψ(rb, tb). It is a postulate that the prob-
ability density to find the particle in position rb at a time tb is given by |Ψ(rb, tb)|2. (1)
These wave functions are elements of the Hilbert space, a complete vector space with an
inner product, which we define as

∫
Φ∗(rb, tb) Ψ(rb, tb) d3rb. Since Ψ is associated with a

probability we also demand that it be normalized,
∫

|Ψ|2 d3rb = 1. In this formulation
the observable quantities are represented by Hermitian operators (i.e., let Ô represent an
observable, then Ô

†
≡ (ÔT )∗ = Ô). These operators have a set of real eigenvalues λn

that correspond to the possible values that a measurement of Ô can take. Each λn corre-
spond to an eigenfunction un(r) of Ô, with these forming a complete set of orthonormal
functions, that is

∫
un un′ d3rb = δnn′ , where δnn′ is the Kronecker delta. The probability

of occurrence of an eigenvalue λn is given by the absolute value of the coefficient cn, the
projection of the state Ψ onto the corresponding eigenfunction cn =

∫
u∗

n Ψ d3rb. Time
evolution of the system is given by Schrödinger’s wave equation

Ĥ Ψ(rb, t) = − ℏ2

2m
∇2Ψ(rb, t) + V (rb, t) Ψ(rb, t) = iℏ

∂Ψ(rb, t)
∂t

, (1.1)

where ℏ is the Planck constant and Ĥ is the Hamiltonian operator for the system. When
the potential is time-independent we can separate the solution of this equation in a tem-
poral part given by exp(−i En tb/ℏ), where En is identified as the constant energy of
the system, and a corresponding spatial part, which is a solution of Schrödinger’s time
independent equation

Ĥ un(rb) = − ℏ2

2m
∇2un(rb) + V (rb) un(rb) = En un(rb), (1.2)

where the stationary states un are the eigenfunctions of Ĥ. From the properties of the
eigenfunctions discussed above, we know that any linear combination of the product
un(r) exp(−i En tb/ℏ) is also a solution of Eq. (1.1). So, the general form of Ψ can be
written as

Ψ(rb, t) =
∑

n

cn un(rb) exp (−i En tb/ℏ) , (1.3)

where the coefficients cn can be obtained from the initial state Ψ(ra, ta), by projecting it
onto each un

cn =
+∞∫

−∞

u∗
n(ra) Ψ(ra, ta) d3ra. (1.4)

We can associate each function Ψ to a vector |Ψ⟩ called ket. In the same way, we define a
bra ⟨Ψ| associated with Ψ∗ in such a way that its action on |Ψ⟩ is the inner product ⟨Ψ|Φ⟩
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as was defined above. Using the fact that the eigenstates of the space operator r̂ are Dirac
delta functions,∗ we see that the wave function is the projection of the state |Ψ⟩ on the
basis of coordinates urb

, i.e., ⟨urb
|Ψ⟩ =

∫
δ3(rb) Ψ(r, tb) d3r = Ψ(rb, tb), as expected.†.

The path-integral formulation offers an alternative way to obtain expectation val-
ues of measurements, and a more general framework to interpret the statistical nature of
the evolution of a quantum system. This formulation was worked out by Richard Feyn-
man in 1948, using the Lagrangian function L of the system instead of its Hamiltonian.
In Feynman’s formulation, we deal with all the possible paths that a system can take
to evolve from an initial configuration (ra, ta) to a final one (rb, tb). To each path i we
associate an amplitude ϕi, with the total amplitude for the evolution, K, being the sum
of the amplitudes for all the , paths(2)

K(rb, tb, ra, ta) =
∑

all paths
ϕi, (1.5)

referred to as the path integral. With this in mind, we present the Feynman formulation of
quantum mechanics, with this monograph being divided in the following way: in Chapter
2 we develop, from the Schrödinger picture, Feynman’s theory of quantum mechanics,
showing how to formulate the sum over all paths in Eq. (1.5). We also present a theorem
concerning quadratic Lagrangians and show how to compute path integrals numerically.
In Chapter 3, we make use of the theory and present results for the harmonic and an-
harmonic oscillators. We use numerical Monte Carlo simulations, for which we developed
our own computer codes. In Chapter 4 we describe the method to study the quantum
electrodynamics of non-relativistic electrons, using it as a motivation to present the per-
turbation theory in the path-integral formulation. Finally, we present some conclusions
in Chapter 5.

∗ That is, r̂ ur = rur → ur = δ3(r). These space eigenstates cannot be normalized in the
same way as done before. Instead, they are Dirac normalized, i.e., ⟨ur|ur′⟩ = δ3(r − r′). The
momentum eigenfunctions, defined by p̂ up’ = p′up’ also follow this same rule. Note that
eigenvalues of these two operators are contained in the continuum.

† In fact, as said, each operator Ô has a complete set of eigenstates, defined by Ô un =
λn un. Being this set complete we can also represent |Ψ⟩ in this basis. This is done by the
projection operation |Ψ⟩ =

∑
n |un⟩⟨un|Ψ⟩. The two sides of the last equation are equal only

if
∑

n |un⟩⟨un| = 1. We call this the completeness relation. To eigenstates with a continuum
spectrum of eigenvalues, as momentum and position, the sum must be replaced by an integral.
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2 THE FEYNMAN FORMULATION FOR THE KERNEL

The evolution of a quantum system is obtained from the solution of Eq. (1.1). At
this stage, we will restrict ourselves to one particle in one spatial dimension. As we shall
see, the generalization of the results will be immediate. For time-independent potentials
we know that the state evolves as given in Eq. (1.3). Replacing the coefficients cn in Eq.
(1.3) using Eq. (1.4) we have that the state is

Ψ(xb, tb) =
+∞∫

−∞

{ ∞∑
n=0

u∗
n(xa)un(xb) exp

[
−i

En

ℏ
(tb − ta)

]}
Ψ(xa, ta) dxa

=
+∞∫

−∞

K(xb, tb, xa, ta)Ψ(xa, ta)dxa,

(2.1)

where we have defined

K(xb, tb, xa, ta) =


∞∑

n=0
u∗

n(xa)un(xb) exp [−iEn(tb − ta)/ℏ] if tb > ta,

0 if tb < ta.
(2.2)

We shall refer to the term K(xb, tb, xa, ta) as the kernel. From Eq. (2.1) it is clear that this
term is responsible for the propagation of the system state from the initial configuration
at Ψ(xa, ta) to the final one, Ψ(xb, tb). We can identify a completeness relation in the
expression of Eq. (2.2) (assuming tb > ta)

K(xb, tb, xa, ta) = ⟨uxb
|

∞∑
n=0

|un⟩⟨un| exp
[
−i

Ĥ
ℏ

(tb − ta)
]

|uxa⟩, (2.3)

so

K(xb, tb, xa, ta) = ⟨uxb
| exp

[
−i

Ĥ
ℏ

(tb − ta)
]

|uxa⟩. (2.4)

Therefore, the function |K(xb, tb, xa, ta)|2 gives us the probability of transition between
the final and initial configuration, being this the fundamental interpretation for K in
Chapter 1. For this reason we will use this term to construct Feynman’s formulation from
the usual operator one.

2.0.1 The sum over all paths

The exponential of Eq. (2.4) has the composition property, so we can divide the
time interval T = (tb − ta) in N steps. So we discretize our time variable in equally spaced
tj’s, i.e., tj = j∆t, with j ∈ Z and ∆t = T/N . In the limit of a large number of partitions
we have, at each time step, the amplitude exp(−i ∆t p̂2

j/2mℏ) exp(−i ∆t V (x̂j)/ℏ), where
x̂j and p̂j are the position and momentum operators at this instant of time. Including



10

the completeness relations for these operators at each time step we have

K(xb, tb, xa, ta) = ⟨uxb
|

∫ N∏
j=0

e−
i∆t p2

j
2mℏ e−

i∆t V (xj )
ℏ |uxj

⟩⟨uxj
|upj

⟩⟨upj
| dxj

dpj

2πℏ

 |uxa⟩. (2.5)

In the above expression, the operators have already acted on the states, living us with
numbers to work with. This is one of the great advantages of Feynman’s formulation. Note
that the terms inside the brackets repeat N + 1 times, so we call the individual cell at a
specific j as Tj and deal with it. Inserting the position representation of the momentum
eigenstates ⟨uxj

|upj
⟩ = exp (ipjxj/ℏ) (1) we have

Tj =
+∞∫

−∞

exp
[
−i

∆t

ℏ
p2

j

2m
− i

∆t

ℏ
V (xj−1) + i

pj(xj − xj−1)
ℏ

]
dxj

dpj

2πℏ
. (2.6)

Now we want to isolate the coordinate variables by computing the momentum integrals.
To do this, we shall do an analytic continuation by taking the complex-time τj = itj. This
change of variable reduces the complex integral in Eq. (2.6) to a Gaussian one. However,
τ is a complex variable so, by this change of coordinate, we have abandoned the physical
time. Now we can calculate the momentum integral

1
2πℏ

+∞∫
−∞

exp
{

−∆τ

ℏ

[
p2

j

2m
− ipj

(
xj − xj−1

∆τ

)]}
dpj =

√
m

2πℏ∆τ
exp

[
−m∆τ

2ℏ

(
xj − xj−1

∆τ

)2
]

.

(2.7)
Replacing this result in Eq. (2.6) and returning to real-time, we have that the cell Tj is

Tj =
(

m

2πℏi∆t

)1/2 +∞∫
−∞

exp
{

−i∆t

ℏ

[
m

2

(
xj − xj−1

i∆t

)2
+ V (xj−1)

]}
dxj. (2.8)

Now we can use the obtained value for each cell and write Eq. (2.5) as

K =
(

m

2πℏi∆t

)N/2 +∞∫
−∞

exp

i∆t

ℏ

N∑
j=1

[
m

2

(
xj − xj−1

∆t

)2
− V (xj−1)

] dxN−1dxN−2 . . . dx1.

(2.9)
Note that our time discretization has created a natural space discretization, with the
system evolution being described on a space-time lattice. Furthermore, we can recognize
a discrete Lagrangian function being calculated in the lattice sites and being multiplied
by a temporal increment, which characterizes a discrete version of the action integral

S[x(t)] =
tb∫

ta

L(ẋ, x; t) dt ≈
N∑

j=1

[
m

2

(
xj − xj−1

∆t

)2
− V (xj) + V (xj−1)

2

]
∆t. (2.10)

So, the trajectory of the particle is described by a collection of space-time points on this
lattice. To reconstruct the continuum trajectory one can connect these points by straight
lines, as shown in Figure 1. It is good to remember that this path is an arbitrary one, not
necessarily the classical path, which is fixed by the condition δS/δx(t) = 0. (3)
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Figure 1 – Construction of a possible path on the space-time lattice.

Source: By the author.

So, we have found that the amplitude ϕi for the occurrence of a path i is given
by the complex exponential of the associated action in units of ℏ. (2) We consider all the
possible paths by taking all the possible values that the xj’s can assume, which is done by
the integrals in Eq. (2.9). So we have found a way to calculate the sum over all the paths
of Eq. (1.5). Of course, in a formal sense, the paths defined above cannot be real, due
to the edges in the connections of the lattice points, as shown in Figure 1. This problem
arises from the fact that we are trying to describe a continuous function (a possible path
for the particle) with a finite number of points. This can be solved if we take the limit of
an infinity number of partitions.

Then, we can define the kernel, or path integral, as (2)

K(xb, tb, xa, ta) = lim
N→∞

(
m

2πℏi∆t

)N/2 +∞∫
−∞

exp
 i

ℏ

tb∫
ta

L(ẋ(t), x(t); t) dt

 dxN−1dxN−2 . . . dx1 .

(2.11)
We shall define the symbols

1
A

≡
√

m

2πℏi∆t
, and Dx(t) = lim

N→∞

1
AN

dxN−1dxN−2 . . . dx1. (2.12)

With these definitions, we say that the amplitude for a system to evolve from an initial
condition (xa, ta), which we shall refer to as point a on our lattice, to a final one (xb, tb),
point b, is given by the kernel K(b, a), and computed by the sum over all paths, with each
path being weighed by its associated action in units of ℏ. (2) We represent this as

K(b, a) =
b∫

a

exp
[

iS[x(t)]
ℏ

]
Dx(t). (2.13)

Eq. (2.11) was obtained for time-independent potentials. However we shall extend this
definition to the class of time-dependent potentials, V (r, t), with the difference that, in
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Figure 2 – Example of a transition between points a and b passing through point c.

Source: By the author.

this case, a global factor 1/A does not exist. Being the one responsible for the convergence
of the Eq. (2.11), one must find an equivalent to it when dealing with path integrals of
time-dependent potentials. Furthermore, as we saw, to describe the paths we only need
to create a lattice in time and then integrate over all the possible values of the space
coordinates at the lattice sites. This directs us to a natural generalization for three-
dimensional systems, where the path r shall be described by its coordinates t, x, y, z. We
keep all the process the same, but now our path differential is given by Dx(t)Dy(t)Dz(t).
(2)

Undoubtedly the formulation of Eq. (2.13) seems more complicated to work with
than Schrödinger’s one. However, the kernel formulation, besides its computation issues,
has many positive points, with the most striking one being the intuition about the system
that it is capable of providing. To illustrate this let us take an intermediary time tc in the
evolution from an initial state a to a final one b. Let the position of the particle at this
instant be xc. An algebraic manipulation of the terms shows that

K(b, a) =
+∞∫

−∞

K(b, c) K(c, a) dxc. (2.14)

This important result shows that amplitudes for events occurring in succession in time
must multiply. So, the amplitude to go from a to b is equal to the amplitude to go from a

to c, times the one to go from c to b, in a very similar association rule as that for simple
probabilities of two independently events.

We conclude, therefore, that the transitions are not associated, being discorrela-
tionated events. Note that this result does not assume any particular property for the
paths, since it was obtained passing through a particular space point xc, but then we
integrated over all the possibilities for xc.
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Figure 3 – Construction of an arbitrary path from the classical one and a virtual displace-
ment from it.

Source: By the author.

2.0.2 A theorem concerning quadratic actions

Up to this point our results, although essential, are not useful for a concrete com-
putation of the sum over all paths of Eq. (2.11). In fact, for the majority of the systems
there is not a simple way to calculate the path integral. However, for the very important
class of quadratic Lagrangians, there is a useful result providing us a systematic way to
compute the kernel. Let us consider Lagrangians of the form

L(ẋ, x; t) = a(t)ẋ2 + b(t)x2 + c(t)xẋ + d(t)ẋ + e(t)x + f(t), (2.15)

where a, b, c, d, e and f are all well behaved functions of time. Now we describe the arbi-
trary path x(t) as a combination of the classical one, xcl (which satisfies δS/δx(t) = 0),
and a virtual displacement from it η(t), (2) as shown in Figure 3. So, we have

x(t) = xcl(t) + η(t) and ẋ(t) = ẋcl(t) + η̇(t), (2.16)

with the boundary conditions η(ta) = η(tb) = 0. By definition, the classical path is the
one that, when shifted by an arbitrary function η(t), keeps the action constant to first
order in η. (3) Therefore, when we vary the path, we expect to see η contributing in the
action integral with only terms of order 2 and higher.

Moreover, the fact that the classical path is a fixed one implies that Dxcl = 0. Then,
when describing an arbitrary path x by a sum of xcl and a virtual displacement η, we have
that Dx(t) = Dη(t). So we can describe all the paths by taking all the possible virtual
displacements. We compute now the kernel for the Lagrangian of Eq. (2.15), splitting the
path as in Eq. (2.16). Keeping terms to order 2 in η we can write the total action as a sum
of the action of the classical path, Scl = S[xcl(t)], and a term that depends only on the
square of η (remembering that terms of first order in η cause no changes in the action),
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so

S[x(t)] = Scl +
tb∫

ta

[
a(t)η̇2(t) + b(t)η2(t) + c(t)η̇(t)η(t)

]
dt, (2.17)

which allows us to write the path integral in terms of the virtual displacement η as

K(xb, tb, xa, ta) = e
i
ℏScl

0∫
0

exp
 i

ℏ

tb∫
ta

(
a(t)η̇2(t) + b(t)η2(t) + c(t)η̇(t)η(t)

)
dt

 Dη(t),

(2.18)
where the term exp[iScl/ℏ] is a constant one. The limits of integration in the path integral
for η are remainders of the boundary conditions (the virtual displacement must vanish at
the ends of the interval). Note that these conditions forbid any dependence on η itself. So,
the second path integral must be a function of only the times at the limits. (2) Calling
this function of F (tb, ta), we can write the path integral for quadratic Lagrangians as

K(xb, tb, xa, tb) = F (tb, ta) exp
[
iScl

ℏ

]
, (2.19)

where

F (tb, ta) =
0∫

0

Dη(t) exp

 i

ℏ

tb∫
ta

[
a(t)η̇2(t) + b(t)η2(t) + c(t)η̇(t)η(t)]

]
dt

 . (2.20)

The result expressed in Eq. (2.19) says that, for quadratic Lagrangians, the amplitude
for the evolution of the system between two points is dominated by the classical path
between these points, with the non-classical paths contributing with a fluctuation term
F (tb, ta). (2) To work out the classical action one must solve the Euler-Lagrange equations
of motion and obtain xcl, then use this function to compute the action integral of Eq.
(2.10). In other words, the exponential term in Eq. (2.19) can be completely known from
classical mechanics. So, to determine the kernel we just need to carry out the computation
of F (tb, ta). Since F is also given by a path integral, one could think that this work was
done in vain. However, the fact that η must vanish at the limits of the path makes this
integral very special, allowing us to expand the virtual displacement function in a Fourier
series in sines

η(t) =
∞∑

n=1
bn sin

(
nπt

T

)
. (2.21)

Each particular function η would return us a particular set of coefficients bn’s, so we can
describe the paths by changing the variable of integration to these coefficients. We need
to find the increase in the integration volume that is caused by this change. This can
be done in a simple way by going to our space-time lattice. With time being a discrete
variable that grows in equally spaced steps of ∆t, we can write Eq. (2.21) in matrix form

η(t1)
...

η(tN)

 =


sin

(
πt1
T

)
. . . sin

(
Nπt1

T

)
... . . . ...

sin
(

πtN

T

)
. . . sin

(
NπtN

T

)
 ·


b1
...

bN

 . (2.22)
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The change in the volume of integration will be given by the absolute value of the de-
terminant of the transformation matrix. However, note that this matrix is orthogonal, so
its determinant is, in module, equal to 1. This fact allows us to calculate the fluctuation
term of Eq. (2.20) with the Fourier coefficients of the series expansion. To illustrate the
method we show the computation of the kernel for the free particle and the harmonic
oscillator.

2.0.2.1 Free particle

We start our examples with the free particle in one dimension. We need to calculate
the path integral for the associated Lagrangian, which is quadratic. We make use of Eq.
(2.19). The Lagrangian function and the associated action between the points a and b are

L(ẋ(t); t) = mẋ2(t)
2 and Scl = m

2
(xb − xa)2

tb − ta

. (2.23)

Describing the virtual displacements by the Fourier expansion of Eq. (2.21) allows us to
write F as

F (tb, ta) =
+∞∫

−∞

N−1∏
n=1

exp
im

2ℏ

N−1∑
n,n′=1

(
π

T

)2
nn′

tb∫
ta

sin
(

nπt

T

)
sin

(
n′πt

T

)
dt

 dbn,

=
N−1∏
n=1

+∞∫
−∞

exp
[

im

2ℏ
T

2

(
πn

T

)2
b2

n

]
dbn,

(2.24)

which is just a product of Gaussian integrals. By computing the integrals and taking the
limit of N → ∞ we find that the kernel for the free particle in the evolution from a point
a to a point b, which we shall refer to as KF (b, a), is (2)

KF (b, a) = KF (xb, tb, xa, ta) =
√

m

2πiℏ(tb − ta) exp
[

mi

2ℏ
(xb − xa)2

tb − ta

]
. (2.25)

2.0.2.2 Harmonic oscillator

Our second example is the harmonic oscillator. Its Lagrangian is

L(ẋ(t), x(t); t) = mẋ2(t)
2 − mω2x2(t)

2 , (2.26)

where ω is the frequence of the oscillator. Once more, this is a quadratic Lagrangian, so
we can apply the method of Section 2.0.2. The procedure in this calculation is essentially
the same as that of Section 2.0.2.1, with the final result being

F (tb, ta) =
√

mω

2πiℏ sin(ωT ) , (2.27)

where T = tb − ta. To completely determine the kernel we need also to know the classical
action. This is done by solving the Euler-Lagrange equations and using the resulting
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function to compute the action integral. After this calculation one finds that the kernel
for the harmonic oscillator is

K(xb, tb, xa, ta) =
√

mω

2πiℏ sin(ωT ) exp
{

imω

2ℏ sin(ωT )
[
(x2

b − x2
a) cos(ωT ) − 2xbxa

]}
.

(2.28)
In our work in Chapter 4, we are going to deal with harmonic oscillators that interact
with an external field, that is, there exists a driving force f(t). The Lagrangian for the
system under the external force is

L(ẋ(t), x(t); t) = mẋ2(t)
2 − mω2x2(t)

2 + xf(t). (2.29)

To know the quantum mechanics of this system we need to find its kernel. However, note
that the driven term appears only in the first order in x, so it is effectless in the function
F of Eq. (2.27). For the kernel to be completely determined we only need to know the
action of the classical driven harmonic oscillator. Once more this is a completely classical
calculation (a much longer one in this case) and the final result is

K =
√

mω

2πiℏ sin(ωT ) exp

 imω

2ℏ sin(ωT )

(x2
b − x2

a) cos(ωT ) − 2xbxa + 2xb

mω

tb∫
ta

f(t) sin ω(t − ta)dt

+ 2xa

mω

tb∫
ta

f(t) sin ω(tb − t)dt − 2
m2ω2

tb∫
ta

t∫
ta

f(t)f(t′) sin ω(tb − t) sin ω(t′ − ta)dtdt′

 .

(2.30)

Result of Eq. (2.30) returns us the quantum mechanical evolution of the system for any
driving force f(t). It also shows us the utility of quadratic actions: once the driven term
appeared just in order 1 in x we already knew the function F and all the computation
was restriced to the action.
2.0.3 Euclidean path integrals

Analytical solutions are not always available in quantum mechanics in either of its
formulations. This fact forces us to resort to numerical simulations. Feynman’s formulation
offers us an interesting way to deal with the problem numerically, based on the definition
of Eq. (2.9). Let us rewrite this equation, making use of the complex time∗ τj = itj

K =
(

m

2π∆τ

)N/2 +∞∫
−∞

exp


N∑

j=1

[
m

2∆τ
(xj − xj−1)2 + ∆τV (xj−1)

] dxN−1dxN−2 . . . dx1.

(2.31)
Analytical issues emerge when we take the limit of an infinite number of partitions. Note,
however, that by staying with a finite number of divisions of the interval we find a discrete
version of the kernel. In it, the path x(t) is represented by a set of real numbers x(t) =
∗ As is common in numerical work, we adopt dimensionless variables, making ℏ = 1. The

dimensions can be recovered in the end
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{x(t0), x(t1), . . . , x(tN)} in the same sense of that of Figure 1. Nevertheless, it should be
noted that the use of the complex-time is no longer just a trick for the calculation, it
is now used to define the kernel. This use has some consequences, e.g., the change in
the definition of the Lagrangian function† and the fact that time is no longer a physical
variable, since that τj = itj means that τj is a complex variable. We shall refer to the
path integral of Eq. (2.31) as an Euclidean path integral. (4) Euclidean path integrals
are very useful in numerical work, since they reduce quantum mechanics to a problem of
numerical integration in N − 1 dimensions, which can be done by Monte Carlo methods
of integration. (5)

With the numerical approach, we can find the kernel. We can use this obtained
kernel to compute other properties of the system. Lets us exemplify this by showing how
to find the ground state. Returning to Eq. (2.4), now in the complex-time formalism, and
inserting the completeness relation of the energy eigenstates (∑ |un⟩⟨un| = 1) we find

K(xb, τb, xa, τa) = ⟨uxb
| exp

(
−τĤ

)∑
n

|un⟩⟨un|uxa⟩, (2.32)

where τa = i ta, τb = i tb and τ = i T . If we compute the kernel with the final and initial
points of the interval being the same, xb = xa, the previous relation becomes

K(xb, τb, xb, τa) =
∑

n

|un(xb)|2 exp(−τEn) τ large−−−−→ |u0(xb)|2 exp(−τE0). (2.33)

For long times the exponentials of the large En’s shall vanish, with only the smallest
energy surviving. As said in Chapter 1, the eigenfunctions must be normalized, so if we
integrate over xb we can determine the energy and the ground state eigenfunction by

E0 = −1
τ

log
 +∞∫

−∞

K(xb, τb, xb, τb)dxb

 and |u0(xb)|2 = K(xb, τb, xb, τa) exp (τE0) .

(2.34)
Eq. (2.34) returns us the ground-state for the system. Some applications of these results
will be shown in the next section. There is also a useful way to compute observables with
numerical path integrals, (4) but we shall not discuss it here, since it is not our goal.

† A direct substitution of the complex time in Eq. (2.9) can show that the Lagrangian is now
defined as L = K.E.+V , where K.E. is the kinetic energy for the system and V its potential
energy.
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3 RESULTS FOR HARMONIC AND ANHARMONIC OSCILLATORS

We start by approaching the one-dimensional harmonic oscillator by the method
of the last section and finding its ground state. We start with it, although its solution is
completely known, because it shall give us a way to compare our results with the theory.
We know the ground state eigenfunction and its energy from the Schrödinger theory∗ (in
units of ℏ = ω = m = 1)

u0(x) =
( 1

π

)1/4
exp

(
−x2

2

)
, E0 = 1

2 . (3.1)

To determine the ground state numerically we must follow the method of Section 2.0.3.
So, we have to discretize the complex-time on a lattice with N + 1 points (indexed by 0
and N are the boundaries) and then calculate the integral of Eq. (2.31). To compute this
integral we apply the Monte Carlo method. (5) In this method, we draw a number ns of
random points inside a volume of integration† V . Then, we replace the integral with the
mean value of the function times the volume of integration. That is, for the integral of a
function g(x) we have ∫

V
g(x) dV = V

ns

ns∑
i=1

g(xi). (3.2)

The equality holds only for ns → ∞. In our computations, we will be using a finite
ns, so our results will contain an error bar. More than that, our paths are randomly
generated, so if we run the code twice we shall not get the same result. To deal with that,
we will compute the desired values (kernel at a point and energy) nr times, and use the
mean value of the set as our estimate for the quantities. With this, we can also find the
standard deviation from the mean, which gives us the error that is being made. With
the method well established, we could solve the problem of the harmonic oscillator. For
this, we replaced the simple harmonic potential, that in our units is written as x2/2, in
Eq. (2.31), and then integrated it as described above. We used N = 6 and τ = 4, and
computed the kernel in 50 equally spaced x points, with x in the interval −2.5 ≤ x ≤ 2.5.

∗ The eigenstates for the harmonic oscillator could be found completely from Feynman’s the-
ory, once we know the kernel for the system. To do this, we should rewrite Eq. (2.28) not
in terms of sines and co-sines, but in exp(±iωT ), and then expand the exponential. Then a
direct correspondence between this expansion and Eq. (2.2) give us the eigenfunctions and
energies. Since this is just an algebraic work we shall not develop it here.

† When the integration region goes to infinity, one must be careful in the application of Monte
Carlo methods. To our goals, the desired integral vanishes at the infinity, so we can replace
the limits of integration by a cutoff point, xcut. In the examples of this Chapter we used
xcut = 5.
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We used ns = 100000 samples, and nr = 100. The energy value obtained was‡

EHO
MC = (0.486 ± 0.006). (3.3)

The eigenstate found is shown in Figure 4, where we compare it with the analytical solu-
tion. Note that both, energy and eigenstate, are in good accordance with the theoretical
values. We could get a better result by increasing the number of partitions of the path.
But this also increases the dimension of our integral, requiring more computation time.
This is a symptom of the Monte Carlo slow convergence, which goes as 1/

√
ns. We can

also apply the method to a Lagrangian of the type
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Figure 4 – Numerical solution for the harmonic oscillator eigenstate and the comparison
with the analytical result.

L = m ẋ2

2 + 1
2m ω2 x2 + κ x4, (3.4)

with is known as the anharmonic oscillator. Note that the term x4 does not allow the
application of the preceding results, and in fact, no analytical solution for this system is
available. However, we can use the numerical approach to find the ground state. As an
example let us solve the case where κ = 0.1, for which we expect that the behavior is close
to the harmonic oscillator, since the κ term is small compared to ω (= 1 in these units).
Using the same conditions as before, we found for the ground state the energy of Eq.
(3.5) and the eigenfunction of Figure 5, where we compare it with the ground state of the
‡ All the results shown in this section were obtained by a code written by the author in

FORTRAN 90, following. (4)
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harmonic oscillator. In both results, we verify that the solutions are close to the harmonic
oscillator, with the quartic term being just a small perturbation of it. This perturbation
causes a small shift in the energy of the state and increases the probability of the particle
being found around the origin.

EANO
MC = (0.518 ± 0.006) (3.5)
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Figure 5 – Numerical solution for the anharmonic oscillator eigenstate and comparison to
the ground state of the harmonic oscillator.

]
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4 QUANTUM ELECTRODYNAMICS (QED)

In the preceding sections, we have been dealing with the quantum mechanics of
point particles. We showed that, if we know the classical action S[x(t)] for the system,
then the quantum mechanical amplitude to evolve from an initial to a final state is given
by the sum of exp{iS[x(t)]/ℏ} over all the possible paths that connect the two bound-
aries. This procedure yields the quantization of the theory. Our goal now is to study the
quantum phenomena associated with the electromagnetic field, which is known as quan-
tum electrodynamics (QED). To do this we shall use the same procedure as before, but
now for the fields that determine the system. This is an extension of the initial postulate
(which encompassed only actual paths x(t)) to functions of the paths through the space.
To start, we need an action that returns the correct equations of motion for the electric
and magnetic fields E and B, that is, the Maxwell equations. (6) We know that B is the
curl of a field A, known as the vector potential, so B = ∇ × A. The electric field E
depends on A and the gradient of a potential V , so E = −∇V − (1/c) ∂A/∂t, where c

is the speed of light in vacuum. To completely determine the field A we still have to give
its divergence. We will use ∇ · A = 0. With this, manipulation of Maxwell’s equations
returns the equations of motion in terms of the potential fields

∇2V = −4π ρ(r, t) and ∇2A − 1
c2

∂2A
∂t2 = −4π

c
j(r, t) + 1

c
∇∂V

∂t
. (4.1)

It will be useful to write the action for the system in terms of Fourier components∗. So,
we take the Fourier transform of the potentials A and V , and the charge and current
densities ρ and j, and rewrite Eq. (4.1) in terms of these. We shall refer to components
of V (r, t) as Ṽ (k, t), of A(r, t) as Ã(k, t), of ρ(r, t) as ρ̃(k, t) and of j(r, t) as j̃(k, t). In
terms of these, components the equations of motion are written as

Ṽ = 4π ρ̃

k2 , and ¨̃A + (kc)2 Ã = −
√

4π

(
j̃ + k (k · j̃)

k2

)
. (4.2)

These equations show us that, if we know the charge density we also know Ṽ . This means
that V does not contain any retarded effect, with it all relying on A. This is an effect
of our choice for ∇ · A. The important fact is that Eq. (4.2) shows that field A can
be seen as a collection of driven harmonic oscillators propagating throughout the space.
Each oscillator has an individual frequency ωk = kc and the oscillators associated with
∗ The convention used for the direct Fourier transform f̃ of some function f was

f̃(k) =
+∞∫

−∞

f(r) exp(−ik · r)d3r, f(r) =
+∞∫

−∞

f̃(k) exp(ik · r) d3k

(2π)3 .



24

two distinct wave numbers k and k′ do not interact. This means that we have decomposed
field A into its normal coordinates. This is an important fact, since the problem of the
driven harmonic oscillator was completely solved in Eq. (2.30).

Now we are ready to write an action for the electromagnetic field. We are interested
in the situation where we have matter and fields present, so we must also consider their
interaction. The Lagrangian that describes the field and its interaction with matter is (2)

L =
∫ −ρ V + 1

c
j · A + 1

8π

(−∇V − 1
c

∂A
∂t

)2

− (∇ × A)2

 d3r. (4.3)

Replacing the expressions for the fields and densities in terms of the Fourier components,
we find that the Lagrangian function for the complete system (including the motion of
the matter) is

L =
∫ [

1
2

˙̃σ2 + 1
2

(
|Ṽ |2 k2

4π
+ ˙̃A∗ · ˙̃A − ω2

k Ã∗ · Ã
)

−

(
ρ̃(−k, t) Ṽ −

√
4π j̃(−k, t) · Ã

) d3k

(2π)3 ,

(4.4)

where σ is the matter density in the region and σ̃ is its Fourier transform. Quantum
electrodynamics arises when we compute the sum over all the paths for the action asso-
ciated with this Lagrangian. Note that the boundary conditions are now the initial and
final displacement of the matter σ̃ and configurations of the fields Ṽ and Ã. So our path
integral is carried over all the possible configurations for these functions†. The fact that
the action for the system contains a term of interaction means that not only the field
interferes in the matter evolution, but also the matter interferes in the dynamics of the
field.

For a better understanding of the quantum behavior of the field, we take a situation
where there is no matter present. In this case, the field oscillators are free, since they do
not interact with each other, the final solution is just a product of the solutions for each
mode of frequency ωk. We also know, from Schrödinger’s theory, that the energy levels
for an oscillator are ℏω(n+1/2), where n = 0, 1, 2 . . . , and so on. The total energy for our
field will be a sum of the energies from each oscillator in each polarization‡. Once we have
† The fact the ∇ · A = 0 implies that k · Ã = 0, so the Fourier components of the vector

potential do not vanish only in two directions orthogonal to k. We shall refer to these
directions as Ã1 and Ã2.

‡ In the continuous approach that was being taken until this point, this would mean an integral
over d3k. Is easier to deal with the system inside a box of volume Vol and use periodic bound-

ary conditions. With this the integrals became simple sums,
+∞∫
−∞

() d3k/(2π)3 →
∑
k

()/Vol,

with the values of k being now equally spaced. With this change we must normalize our
functions, multiplying each one by 1/

√
Vol. Once this change affects only the boundaries of

the problem in the limit of a huge box, where we would not be interested in what goes on
next to the walls, our results are not changed.
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an infinite number of oscillators, this sum diverges. To solve this we make a change the
zero point energy, assigning the zero energy for the states with n = 0. Then, the energy
for any state of the field is

E =
∑
nk

(n1,k + n2,k)ℏkc, (4.5)

where n1,k and n2,k are the quantum numbers for the oscillators in each polarization
direction. The change in the zero of energy does not affect the physics, since this depends
only on energy differences. The excitation energies are multiples of ℏkc. In the field theory,
we can see these excited states as the presence of a particle, which in the case of the
electromagnetic field, is named a photon. (2) So, if the energy associated with a mode is
np,kℏkc, this means that we have np,k photons present, with polarization in the direction
p and with momentum ℏk. This means that when all the modes are in the ground state
we have no photons present. This is known as the vacuum of the field.

This interpretation for the excited states is really useful and holds for more com-
plicated theories (such as quantum field theory). It still holds even when matter is present,
but, in this case, photons can be emitted or absorbed in the evolution of the system. So,
when matter is present our boundary conditions are the matter displacement and the ini-
tial and final number of photons in each mode. So, given an initial state |Ψ(xa, Aa, Va, ta)⟩
the probability amplitude that the system will evolve to a final state |Ψ(xb, Ab, Vb, tb)⟩ is
given by ⟨Ψ(xb, Ab, Vb, tb)|K(xb, Ab, Vb, tb, xa, Aa, Va, ta)|Ψ(xa, Aa, Va, ta)⟩, where K is the
kernel for the action of Eq. (4.4), computed between the states for field and matter that
determine Ψ at tb and ta. The fact is that the path integral for the system is complicated,
and we do not know how to compute it analytically in most situations. This is a recurrent
problem in quantum mechanics.

However, in situations where we can split the original Lagrangian in L = L0 + v,
where L0 is a Lagrangian function for which we know the analytical result, and v is a
small term compared to it, we can apply what is known as perturbation theory. Once v is
small compared to L0, its integral over time also is it. So, we can expand the kernel in a
power series of

∫
iv/ℏ dt. Calling K0 the kernel associated with Lagrangian L0, we find,

after the expansion and some algebraic manipulation, that the kernel is given by

K(b, a) = K0(b, a) − i

ℏ

∫
K0(b, c)v(c)K0(c, a)dxc dtc + . . . , (4.6)

where the second term in the right-hand side of the above equation is called the first-order
perturbation term, the next one would be the order 2 term, and so on. The order 1 term
represents the evolution of the system under the action of only L0 between the state a

and a state c, where this last one is arbitrary. In this state c the potential acts, which
is represented by the term v(c). Then, the system evolves to the final state under the
influence of only L0 again. We integrate over all possible positions and times for that
occurrence of v(c), so this is just an auxiliary state. We call c a virtual state where there
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is an interaction between the unperturbed system, L0, and the perturbation potential
v. The first-order term represents only one interaction. The same development for the
second-order therm would show (2) that it corresponds to two interactions, the third-
order term to three, and so on. This interpretation for the perturbation expansion is one
of the main advantages of Feynman’s formulation, with no close physical interpretation
being available in Schrödinger’s picture.

A manipulation of the action for the Lagrangian of Eq. (4.4) shows (2) that the
terms of the driven harmonic oscillators (Ã and j̃) are proportional to α = e2/ℏ c ≈
1/137, known as the fine structure constant. This implies that the electromagnetic terms
are, generally, small compared to the matter ones. So, perturbation theory plays a key
role in QED. It is so fundamental, that there exists a special tool, known as Feynman
diagrams, used to construct and understand each of the perturbation expansion terms.
In these diagrams, we represent the time running to the right, charged particles§ by
arrows, and photons by wavy lines (and the symbol γ). With it, the fundamental process
of QED is represented by the vertex (7) of Figure 6(a). By connecting replicas of this
primitive vertex, we can construct physical phenomena. However, observable particles are
represented only by the particles that came in and out of the diagram. Particles that
are contained inside it, that is, that begin at one vertex and end at another, are virtual
particles.

We can take as an example the case of two electrons. The evolution of the system
would be given by the associated kernel for the system. If we apply perturbation theory
to it, a first-order term would represent the interaction of the electrons with the vacuum
field and can be represented by the diagram of Figure 6(b). Note that we do not have any
photons at the beginning or the end of the process. The emitted photon is virtual, and
represents one interaction of the matter and the field (it is the term v(c) of Eq. (4.6)).
We can also take cases where we have one photon and one electron initially. A first-order
term would be represented by the diagram of Figure 6(c), where the electron absorbed
the photon and later scattered it, which is Compton’s scattering. Again, note that we
have one electron and one photon at the beginning and the end of the process.

Second-order terms would mean two interactions of the unperturbated system
with the potential. This is represented with more vertices in our diagrams. For example,
in the two electrons case, a second-order interaction means that two virtual photons were
emitted and absorbed, which can be represented by the diagram of Figure 6(d).

§ For us, these particles are non-relativistic electrons. We restrict to this case because rel-
ativistic electrons must be described not by Schrödinger’s equation, as done here, but by
Dirac’s.
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(d) Two photons exchange between two
electrons

Figure 6 – Examples of Feynman diagrams for first and second order phenomenas.

Source: By the author.
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5 CONCLUSION

We developed Feynman’s formulation for quantum mechanics. The initial postulate
was that the amplitude for the evolution from an initial state a to a final one b is given
by a kernel K(b, a) that is the sum over all the paths that connect these two boundary
states, Eq. (1.5). In Chapter 2 we developed the mathematical formulation of the theory
starting by the Schrödinger equation. So, we have that these two formations do match.
We saw that in the kernel formulation the operators are replaced by numbers, with this
simplification being one of the advantages of the theory. Furthermore, we also showed
that the probability interpretation is natural, with events in succession being unrelated,
Eq. (2.14), and that for quadratic Lagrangians we have a well established method for the
kernel computation, Eq. (2.19).

Otherwise, the kernel computation is not a simple task. For this reason, we devel-
oped a numerical approach to the problem in Section 2.0.3 and Chapter 3. We called this
version the Euclidean path integral and showed that it is obtained by keeping the complex-
time τ . Then,we solved the harmonic and anharmonic oscillators by the Euclidean path
integral method showing that the results do match with what was expected. This is a
striking result, since it was obtained using a non-physical time. In fact, when we use the
complex time there is a direct identification of the kernel with a partition function, (2)
being this another advantage of the theory.

Lastly, in Chapter 4 we extend the quantization of the action for the electromag-
netic field. As we saw, we cannot write an action in which the field and matter are not
coupled. This means that not only the field interferes in the matter dynamics, but the
matter also interferes in the field evolution, being this is a new result. Otherwise, the
kernel for the system is complicated, which creates the need of an expansion in a power
series, know as perturbation theory. The expansion done is valid not only in QED but
in theory as a whole. We saw that Feynman’s formulation for the perturbative series
gives us a really useful interpretation for each of the terms, e.g., the order 1 term means
one interaction of the system with the perturbation potential, the order 2 two interac-
tions, etc. This interpretation is so important that in QED we have a special tool for the
understanding of each of them, the Feynman diagrams, exemplified in Figure 6.

So, as we saw, besides the intricate computation of the kernel, Feynman’s formula-
tion has many advantages, among which the quantization being simple and perturbation
theory very intuitive. More than that, the quantization of the fields, as done in Chapter
4, can be extended to more complicated systems with this formulation being useful, for
example, also in quantum field theory.
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